什么是3d加速卡,3d加速软件

tamoadmin 电脑硬件 2024-05-22 0
  1. GPU卡到底是干什么用的

显卡用途是将计算机系统所需要的显示信息进行转换驱动显示器,并向显示器提供逐行或隔行扫描信号,控制显示器的正确显示,是连接显示器和个人计算机主板的重要组件,是“人机对话”的重要设备之一。

显卡通常由总线接口、PCB板、显示芯片、显存、RAMDAC、VGA BIOS、VGA功能插针、D-sub插座及其他***组件构成,现在的显卡大多还具有VGA、DVI显示器接口或者HDMI接口及S-Video端子和Display Port接口。

早期的显卡只是单纯意义的显卡,只起到信号转换的作用;目前我们一般使用的显卡都带有3D画面运算和图形加速功能,所以也叫做“图形加速卡”或“3D加速卡”。PC上最早的显卡是IBM在1981年推出的5150个人计算机上所搭载的MDA和CGA两款2D加速卡。

什么是3d加速卡,3d加速软件
(图片来源网络,侵删)

显卡在大型游戏的运用中体现较大。

扩展资料

显卡的分类:

1、ISA显卡,ISA显卡是以前最普遍使用的VGA显示器所能支持的古老显卡。

2、VESA显卡,VESA是(***电子工程标准协会)的缩写,由多家计算机芯片制造商于1989年联合创立。1994年底,VESA发表了64位架构的“VESA Local Bus”标准,80486的个人计算机大多***用这一标准的显卡。

3、PCI显卡,PCI显卡,通常被使用于较早期或精简型的计算机中,此类计算机由于将***P标准插槽移除而必须仰赖PCI接口的显卡。目前已知被多数的使用于486到PentiumII早期的时代。

4、***P显卡,***P是英特尔Intel公司在1996年开发的32位总线接口,用以增进计算机系统中的显示性能。分有***P 1X、***P 2X、***P 4X及最后的***P 8X,带宽分别为266MB/s、533MB/s、1066MB/s、以及2133 MB/s。

5、PCI Express显卡,PCI Express(亦称PCI-E)是显卡最新的图形接口,用来取代***P显卡,面对日后3D显示技术的不断进步,***P的带宽已经不足以应付庞大的数据运算。目前性能最高的PCI-Express显卡是nVidia公司的“NVIDIA Titan V ”和AMD公司的“Radeon Pro Duo(Fiji)”。

6、外接PCI Express显卡,用USB或Thunderbolt高带宽线材连接到外接PCI Express显卡盒,需要用独立电源供应。

百度百科-显卡

GPU卡到底是干什么用的

1、超频能力不同

OC版显卡支持自动超频(默认频率更高),普通版需要用户手动开启超频。

2、散热性能不同:

OC版显卡为了满足超频玩家需求,在散热上比普通版做了更多的优化和改进,以降低超频时带来的更大热量。

3、使用寿命不同:

OC版显卡使用的显存颗粒比普通版寿命更长,以保证能够更长时间的维持高频运作状态。

扩展资料;

显卡主要负责把主机向显示器发出的显示信号转化为一般电器信号,使得显示器能明白个人计算机再让它做什么。显卡主要由显卡主板、显示芯片、显示存储器、散热器(散热片、风扇)等部分组成。

显卡的主要芯片叫“显示芯片”(Video chipset,也叫GPU或VPU,图形处理器或视觉处理器),是显卡的主要处理单元。显卡上也有和计算机存储器相似的存储器,称为“显示存储器”,简称显存。

早期的显卡只是单纯意义的显卡,只起到信号转换的作用;我们一般使用的显卡都带有3D画面运算和图形加速功能,所以也叫做“图形加速卡”或“3D加速卡”。PC上最早的显卡是IBM在1981年推出的5150个人计算机上所搭载的MDA和CGA两款2D加速卡。

显卡通常由总线接口、PCB板、显示芯片、显存、RAMDAC、VGA BIOS、VGA功能插针、D-sub插座及其他***组件构成,显卡大多还具有VGA、DVI显示器接口或者HDMI接口及S-Video端子和Display Port接口。

在GPU出现以前,显卡和CPU的关系有点像“主仆”,简单地说这时的显卡就是画笔,根据各种有CPU发出的指令和数据进行着色,材质的填充、渲染输出等。

较早的***用的3D显卡又称“3D加速卡”,由于大部分坐标处理的工作及光影特效需要由CPU亲自处理,占用了CPU太多的运算时间,从而造成整体画面不能非常流畅地表现出来。

例如,渲染一个复杂的三维场景,需要在一秒内处理几千万个三角形顶点和光栅化几十亿的像素。早期的3D游戏,显卡只是为屏幕上显示像素提供一个缓存,所有的图形处理都是由CPU单独完成。图形渲染适合并行处理,擅长于执行串行工作的CPU实际上难以胜任这项任务。所以,那时在PC上实时生成的三维图像都很粗糙。不过在某种意义上,当时的图形绘制倒是完全可编程的,只是由CPU来担纲此项重任,速度上实在是达不到要求。

随着时间的推移,CPU进行各种光影运算的速度变得越来越无法满足游戏开发商的要求,更多多边形以及特效的应用榨干了几乎所有的CPU性能,矛盾产生了······

GPU的诞生

NVIDIA公司在1999年8月31日发布GeForce 256图形处理芯片时首先提出GPU的概念。

GPU之所以被称为图形处理器,最主要的原因是因为它可以进行几乎全部与计算机图形有关的数据运算,而这些在过去是CPU的专利。

目前,计算机图形学正处于前所未有的发展时期。近年来,GPU技术以令人惊异的速度在发展。渲染速率每6个月就翻一番。性能自99年,多年来翻番了十倍百倍,也就是(2的10次方比2)提高了上千倍!与此同时,不仅性能得到了提高,计算质量和图形编程的灵活性也逐渐得以改善。

以前,PC和计算机工作站只有图形加速器,没有图形处理器(GPU),而图形加速器只能简单的加速图形渲染。而GPU取代了图形加速器之后,我们就应该摒弃图形加速器的旧观念。

GPU的结构

GPU全称是Graphic Processing Unit--图形处理器,其最大的作用就是进行各种绘制计算机图形所需的运算,包括顶点设置、光影、像素操作等。GPU实际上是一组图形函数的***,而这些函数由硬件实现。以前,这些工作都是有CPU配合特定软件进行的,GPU从某种意义上讲就是为了在图形处理过程中充当主角而出现的。

一个简单的GPU结构示意图包含一块标准的GPU主要包括2D Engine、3D Engine、VideoProcessing Engine、FSAA Engine、显存管理单元等。其中,3D运算中起决定作用的是3DEngine,这是现代3D显卡的灵魂,也是区别GPU等级的重要标志。3DEnglne在各公司的产品中都是宣传攻势的重点照顾对象,名字一个比一个响,像NVIDIA的nFjnjtFX系列、CineFX系列,AMD的SmoothVision系列。一个3DEngine通常包含着T&L单元、VertexProeessingEngine、SetupEngine、PiexlShader等部分。

GPU的工作原理

GPU中数据的处理流程

现在让我们来看看第二代GPU是如何完整处理一个画面的吧!首先,来自CPU的各种物理参数进入GPU,Vertex shader将对顶点数据进行基本的判断。如果没有需要处理的Vertex 效果,则顶点数据直接进入T&L Unit 进行传统的T&L操作以节约时间提高效率。如果需要处理各种Vertex 效果,则Vertex shader将先对各种Vertex Programs的指令进行运算,一般的Vertex Programs中往往包含了过去转换、剪切、光照运算等所需要实现的效果,故经由Vertex shader处理的效果一般不需要再进行T&L操作。另外,当遇到涉及到曲面镶嵌(把曲面,比如弓形转换成为多边形或三角形)的场合时。CPU可以直接将数据交给Vertex shader进行处理。

另外,在DireetX的Transform过程中,Vertex shader可以完成Z值的剔除,也就是Back Face Culling――阴面隐去。这就意味粉除了视野以外的顶点,视野内坡前面项点遮住的顶点也会被一并剪除,这大大减轻了需要进行操作的顶点数目。

接下来,经由VertexShader处理完成的各种数据将流入SetupEngine,在这里,运算单元将进行三角形的设置工作,这是整个绘图过程中最重要的一个步骤,Setup Engine甚至直接影响着一块GPU的执行效能。三角形的设置过程是由一个个多边形组成的,或者是用更好的三角形代替原来的三角形。在三维图象中可能会有些三角形被它前面的三角形挡住,但是这个阶段3D芯片还不知道哪些三角形会被挡住,所以三角形建立单元接收到是一个个由3个顶点组成的完整三角形。三角形的每个角(或顶点)都有对应的X轴、Y轴、Z轴坐标值,这些坐标值确定了它们在3D景物中的位置。同时,三角形的设置也确定了像素填充的范围。,至此,VertexShader的工作就完成了。